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This paper addresses the problem of mechanical systems in which parameters are
uncertain and bounded. Interval calculation is used to "nd an envelope of transfer functions
for mechanical systems modelled with "nite elements. Within this context, a new
formulation has been developed for "nite element problems involving bounded parameters,
to avoid the problems of overestimation. An iterative algorithm is introduced, which leads to
a conservative solution for linear mechanical problems. A method to ensure the convergence
of this algorithm is also proposed. This new algorithm has been tested on simple mechanical
systems, and leads to a conservative envelope of the transfer functions.
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1. INTRODUCTION

The physical parameters used to describe a structure are often uncertain, due to physical
and geometrical uncertainties, or modelling inaccuracies. They are, for instance, Young's
modulus, Poisson's ratio, length, volumic mass or thickness of plates. These uncertain
parameters are generally identi"ed by random variables, and introduced in a stochastic
approach of the problems. Di!erent methods can be used to solve these stochastic
problems. A Monte Carlo simulation may, for example, be carried out. Several other
methods exists [1], such as the perturbation method, the Neumann expansion series,
or a projection on homogeneous chaos. But all these methods consider stochastic variables
for which the density of probability is known (Gaussian variables are mostly used).
Furthermore, real variables are bounded, which is not the case for most stochastic variables.
The Monte Carlo method is very expensive from a CPU point of view, and the others
often encounter convergence problems. Moreover, only the mean value and the moments
(often the variance only) are known, and since the density of probability of
the solution is not known, these informations are di$cult to use. As most of the time the
variables can be bounded, it seems to be judicious to investigate the mechanical
problems containing uncertain parameters from the interval arithmetic theory point of
view. Thus, interval arithmetic [2}4] will be applied in connection with the "nite element
methods.

We are interested in solving linear system of equations, which correspond to the classical
mechanical problem of "nding the transfer function of a structure,

([K] (1#ig)!u2[M]) [H]"[I], (1)
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where [K] and [M] are the sti!ness and mass matrices respectively, g the coe$cient of
hysteretic damping, u the excitation frequency, [H] is the dynamic compliance matrix, and
[I] the identity matrix.

These problems have already been studied by several researchers (e.g., by Chen and Ward
[5], Dimarogonas [6], and Koyluoglu [7]). They applied numerical methods developed for
`reliable computinga based on interval matrices algebra [8}10]. Elishako! et al. have
focused on the bounds of eigenvalues of such dynamic systems [11}15]. Chen [5] has
pointed out the limitations of these formulations, which present a major drawback: the
classical formulation does not take into account the way the matrices are built for
mechanical problems. In fact, the terms of the matrices are not independent of each other,
since they are calculated from the same parameters, for instance, Young's modulus or
density.

We will "rst introduce some basic concepts about interval arithmetic, and we will present
the problematic of solving linear systems of interval equations. We will then introduce
a new formulation of the problem, based on interval parameters which is adapted for the
modelling of mechanical systems.

An adaptation of Rump's algorithm [9] will be proposed which takes into account this
novel interval formulation. The new algorithm is iterative, and therefore the convergence
criteria will be evaluated. The algorithm will be tested on a simple case to enable
a comparison with the classical formulation. We will "nally study frequency response
functions for di!erent mechanical systems, and also evaluate the amount of computations
on simple discrete systems, as well as the accuracy of the solutions.

2. RESOLUTION OF INTERVAL LINEAR SYSTEMS

The interval arithmetic has been "rst introduced by Moore [2], who was interested in the
error propagation due to truncation of the mantissa in computers. Many publications (in
particular the book of Alefeld and Herzberger [3]) give the basic and advanced concepts of
this theory.

In this paper, boldface, lower cases, underscores and overscores, respectively, denote
intervals, scalars, lower and upper bounds of intervals:

x"[x
6
, x6 ]. (2)

The basic interval operations are presented in Appendix A. The interval arithmetic has
special properties (in particular, the property of sub-distributivity (x)(y#z)-xy#xz) that
can lead to problems of overestimation when evaluating functions. We shall then be mindful
to that problem in this paper.

One can also de"ne interval vectors and interval matrices. Interval matrices can be
expressed as

[A]"[A
c
]#[![rad ([A])], [rad ([A])]], (3)

which is quite a convenient form.
The special properties of interval matrices have been investigated, for example, by Ning

et al. and Rohn [10, 16]. (A list of nomenclature is given in Appendix D.)



ANALYSIS OF MECHANICAL SYSTEMS 951
2.1. SOLVING LINEAR SYSTEMS

If one is interested in the dynamic behavior of an industrial mechanical structure, one has
to consider "nite element modelling, which leads to matrices (such as sti!ness, mass, or
damping matrix). Thus, "nding frequency response functions corresponds to solving linear
systems of equations. If some of the mechanical parameters are uncertain at design stage,
they can be modelled by using the interval theory. The uncertain parameters can be
geometrical ones (length, thickness, clearance, etc.), or physical ones (Young's modulus,
etc.). Then the matrices given by the "nite element theory are interval matrices, and the
problem is generally (static problems, frequency response functions) written as:

[A]MxN"MbN (4)

with [A]3[A] and MbN3MbN. Although several problems can be distinguished, as done by
Chen and Ward [5] and by Shary [17], we will focus exclusively in this paper on the
solution set of the outer problem which is de"ned as R&& ([A], MbN):

R&& ([A], MbN)"Mx3Rn D (&[A]3[A]), (&MbN3MbN)/[A]MxN"MbNN, (5)

where [A] is an interval matrix and MbN an interval vector.
In general, this set is not an interval vector. It is a non-convex polyhedra (see reference [5]

or reference [17], for examples). The Oettli and Prager theorem [18] gives an expression to
get the exact solution set (5).

Theorem 2.1 (Oettli and Prager Lemma). Let [K]3IRn]n and MfN3IRn. Then

MxN3R&& ([K], MfN) Q Dm ([K])MxN!m(MfN)D)rad ([K])DMxND#rad (MfN). (6)

Nevertheless, this expression is quite di$cult to use with matrices corresponding to
real physical cases in an n-dimensional problem. Most of the time, only the smallest
interval vector containing R&& ([A], MbN) will be considered, which is de"ned as
hR&& ([A], MbN). In this case, this ensures that the true solution is included in the numerical
solution found hR&& ([A], MbN). Within the context of this problematic, equation (4) can be
rewritten as

[A]x"MbN. (7)

Several algorithms intend to solve this problem. For example, the Gaussian elimination
algorithm can be adapted to the resolution of a linear system whose coe$cients are interval.
Alefeld has given some basic results in reference [3]. Rohn has shown in reference [19] that
this algorithm could lead to an important overestimation of the solution. It even sometimes
cannot solve the system because of zero pivot encountered.

Ning and Kearfott have made a review in reference [10] of existing methods for "nding
either hR&& ([A], MbN) or an interval vector containing hR&& ([A], MbN). These methods use
particular forms of the matrices, that do not exactly correspond to mechanical cases, and
are more appropriate for the treatment of numerical uncertainties as they are not well suited
for dealing with large uncertainties.

Another useful method is based on a residual iteration, it is called the inclusion method of
Rump [9]. It is an iterative method relying on the "xed point theorem, that leads to sharp
results quite fast.
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3. FORMULATION ADAPTED TO FINITE ELEMENT METHODS

The existing algorithms used to solve R&& ([A], MbN) have been formulated for reliable
computing from a numerical point of view. In an interval matrix for instance, each term can
vary independently of each other in its interval, which is generally sharp.

If the interval formulation has to be adapted to mechanics, the dependence between the
parameters must be taken into account, because many of the terms of the matrices are
depending on the same parameters. For example, if the Young's modulus varies in E,
a sti!ness matrix could formally be written as

E C
k
11

k
12

k
21

k
22
D , (8)

which is not the same as

C
Ek

11
Ek

12
Ek

21
Ek

22
D , (9)

that is treated in the classical interval techniques as

C
E1k

11
E2k

12
E3k

21
E4k

22
D , (10)

with E1,E2, E3,E4 varying in E independently.
When including the parameters in the terms of the matrices and vectors, the width of

R&& ([A], MbN) grows substantially (see the example in section 4.2). If all the matrices
[K]3[K] are considered, it must be noticed that many of them do not physically
correspond to the sti!ness matrices, because sti!ness matrices are symmetric positive and
de"nite. For the di!erent interval parameters in the matrix [A] to be put into factor as in
equation (8), [A] and MbN are developed as follows:

[A]"[A
0
]#

N
+
n/1

en[An
], MbN"Mb

0
N#

P
+
p/1

bpMbpN. (11)

N and P are the number of interval parameters to be taken into account when building the
matrix [A] and the vector MbN. en and bp are independent centered intervals, generally
[!1,1]. [A

0
] and Mb

0
N correspond to the matrices and vector built from the mean values of

the parameters.
For a mechanical problem, the sti!ness matrix will be written with factorized parameters

[K]"[K
0
]#

N
+
n/1

en[Kn
]. (12)

For each value of e
n
in en , [K] remains symmetric positive and de"nite, due to the physical

character of the parameters.

4. A NEW ALGORITHM FOR THE SOLUTION

For the particular form of the problem shown in equation (11), where the interval
parameters are put into factor in front of the matrices, it is necessary to adapt the
algorithms. The new algorithm of resolution proposed here relies on Rump's technique, that
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has been presented by Rohn in reference [20]. His demonstration is recalled in Appendix B.
The inclusion method of Rump [9] relies on the "xed point theorem, and had to be adapted
to avoid the problems of overestimation due to the loss of dependence in interval arithmetic.
As the basic method of Rump, our algorithm is iterative, and then subject to convergence
criteria that will be analyzed in section 4.1.

First, consider a system in which only one parameter is an interval; then

[A]"[A
0
]#a [A

1
], a is centered, (13)

is the equation of the system.
The implementation of the algorithm is as follows.
First, an initialization stage:
e"[0)9, 1)1] is the so-called in#ation parameter;
[R]"inv (mid[A])"[A

0
]~1 is an estimation of the inverse of mid [A];

Mx
s
N"[R]*MbN is an estimation of the solution;

[B]"[A
0
]~1[A

1
];

MgN"[R]* (MbN![A]*Mx
s
N)"!a[A

0
]~1[A

1
][A

0
]~1MbN"!a[B]Mx

s
N;

Mx
0
N"MgN initialization of the solution Mx*N;

[G]"[I]![R]*[A]"!a[B] is the iteration matrix in the equation

Mx*N"[G]Mx*N#MgN. (14)

Second, iterative resolution:
MyN"e*MxN;
MxN"MgN#[G]*MyN
until MxNLMy0N;
if the condition MxNLMy0N is satis"ed, then MxN is a conservative solution of the equation
[A]MxN"MbN.

It must be noticed that all the matrices multiplications and linear system resolutions
concern only deterministic matrices (opposed to the interval ones). The interval formulation
is preserved, and the interval parameters are put into factor in front of deterministic
matrices. The control of the intervals is essential to avoid large overestimations of the
solutions.

After n iterations, the solutions are given by the equations

My
n
N"My

n~1
N#(!1)nanen [B]n Mx

s
N, (15)

Mx
n
N"Mx

n~1
N#(!1)n`1an`1en[B]n`1Mx

s
N, (16)

where the interval parameters have been put in factor in front of the deterministic matrices.
The main di!erence from the algorithm of Rump is the control of the interval parameters

inside the iterative scheme, that avoids dramatic overestimations.
Rohn and Rex have shown in references [21, 20] that the algorithm converges if and only

if o (D[G]D)(1, where o(D[G]D) is the spectral radius of the absolute value of [G]. Few
iterations are necessary to get a result if the matrix [G] is contracting. If the number of
iterations remains small, the overestimation of the solution is not important, and that is why
making [G] as much contracting as possible is interesting: it reduces the number of
iterations and by the way the overestimation e!ect.
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The method proposed above on a system with one interval parameter can easily be
generalized to the problems where

[A]"[A
0
]#

N1
+
i/1

a
i
[A

i
], MbN"Mb

0
N#

N2
+
j/1

b
j
Mb

j
N.

4.1. CONVERGENCE OF THE METHOD

We have proposed an iterative algorithm for solving the linear systems with interval
parameters. This algorithm is based on the "xed point theorem, and the iteration matrix
must be contracting. The problem of the convergence of the algorithm is then crucial to get
solutions.

We have seen that the equation

Mx*N"[G]Mx*N#MgN (17)

is convergent if and only if o (D[G]D)(1. In the general case, the iteration matrix is given by

[G]"
N1
+
i/1

e
i
[A

0
]~1[A

i
] (18)

and the condition is

oAK
N1
+
i/1

!e
i
[A

0
]~1[A

i
]KB(1, (19)

which is quite di$cult to evaluate.
To estimate this value, one can use the following Theorem 4.1 (see reference [22]).

Theorem 4.1 (Perron}Froebenius). Let [A] and [B] be two n]n matrices with
0)D[B]D)[A]. Then,

o ([B]))o ([A]). (20)

And as it is well known that DA#BD)DAD#DBD, one can say that if the stronger
convergence condition

oA+
i

D!e
i
D D[A

0
]~1[A

i
]DB(1 (21)

is veri"ed, then equation (19) is also true.
The condition o (D[G]D)(1 is not always true, especially for systems with wide interval

parameters. We propose a method to avoid this problem and also to improve the
contracting level of [G].

For a system with one interval parameter ([A
0
]#e[A

1
])MxN"MbN, the iteration matrix

is

[G]"!e[A
0
]~1 [A

1
] (22)
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and the condition of convergence is

o (D[G]D)"DeDo (D[A
0
]~1[A

1
]D)(1. (23)

e is a centered interval, so that [A
0
] is the mean value of [A

0
]#e[A

1
].

If e is a relatively wide interval (it means that the terms of e[A
1
] are relatively wide with

respect to the corresponding terms in [A
0
]), condition (23) can be false and the algorithm

will be divergent. If this is the case, the strategy proposed is to split the interval into
a partition of it, and then work on narrower intervals, on which condition (23) will be
veri"ed. If one considers a partition of the interval e"6e

i
, one has

R&& ([A0
]#e[A

1
],MbN)"Z

i

R&& ([A
0
]#e

i
[A

1
], MbN). (24)

From e to e
i
, [A

0
] becomes [A

0
]#m(e

i
)[A

1
], and [A

1
] remains the same. The equation to

be solved is

([A
0
]#m (e

i
) [A

1
]#[!rad (e

i
), rad (e

i
)] [A

1
])Mx

i
N"MbN. (25)

One can de"ne d as

d"sup
e
i
Le

(o(D([A
0
]#m(e

i
) [A

1
])~1[A

1
]D)). (26)

For all interval e
i
such that w(e

i
)(1/d,

De
i
Do(D[A

0
]~1[A

1
]D)(1. (27)

It is then possible to split the interval e into a partition of it 6
i
e
i
, where the algorithm is

convergent for each interval e
i
.

For multi-interval parameter problems, the same kind of splitting technique can be used,
leading to the same result. Moreover, this technique can also be used to accelerate the
convergence of the iterative scheme. The smaller the spectral radius of D[G]D, the faster the
convergence of the algorithm and the smaller the overestimation of the solution.

4.2. TEST OF THE NEW ALGORITHM ON A SIMPLE CASE

A new version of the algorithm of Rump has been developed to handle the case in which
the interval parameters are put into factor in front of the matrices. The intervals are then
controlled all along the algorithm, to avoid too large an overestimation. Moreover, the
convergence of the algorithm can be guaranteed, and even improved by splitting the
intervals into a partition of them.

One can now test the proposed algorithm on a simple case to emphasize its e$ciency with
respect to the basic method.

A new interval formulation adapted to the mechanical problems has been proposed. The
results found with the modi"ed Rump's algorithm are often much sharper than the ones
found with the classical formulation. To show the e$ciency of the method for "nding the
solution of a linear system [A]MxN"MbN, one can consider the very simple example of
a clamped free beam (see Figure 1).

F and M are, respectively, the shear force and bending momentum applied at the free end
of the beam, d and h correspond to the displacement and slope at the free end of the beam.



Figure 1. Clamped free beam.
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The characteristics of the beam are as follows:

Young's modulus E3[2)058e11, 2)142e11] (2)1e11$2%), (28)

inertia I3[8)82e!8, 9)18e!8] (9e!8$2%), (29)

length l"1. (30)

The shear force and bending momentum are also interval parameters:

MfN"G
[!10)2,!9)8]

[29)4, 30)6] H. (31)

If one considers the elementary "nite element matrix of the Euler}Bernouilli theory [23],
the static matrix equation of the problem is

C
2EI
9l

~EI
3l2

~EI
3l2

2EI
3l3
D G

d

hH"G
F

MH, (32)

and from a numerical point of view, the sti!ness matrix is an interval matrix:

C
[4033)68, 4369)68] [!6554)52,!6050)52]

[!6554)52,!6050)52] [12101)4, 13109)04] D . (33)

The "rst problem that can be solved is "nding the solution set corresponding to the
numerical equation

C
[4033)68, 4369)68] [!6554)52,!6050)52]

[!6554)52,!6050)52] [12101)04, 13109)04] D G
d

hH"G
[!10)2,!9)8]

[29)4, 30)6] H. (34)

The Oettli and Prager lemma gives the exact solution set R&& ([A], MbN) and hR&& ([A], MbN)
(dotted line) which is shown in Figure 2. All the terms in the matrix are said to be
independent. Consider the mechanical problem with factorized interval parameters:

EI C
2/9l !1/3l2

!1/3l2 2/3l3 D G
d

hH"G
F

MH . (35)

As this system is quite simple, the solution can be found analytically. The exact mechanical
solution set is given in Figure 2. It is called the mechanical exact solution set. The hull of this



Figure 2. Solution sets for the clamped free beam. EI is uncertain ($2%). Numerical global problem, and
reduced mechanical problem, and their respective hulls.
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set (which is an interval vector) has also been drawn. The mechanical exact solution set is
included in R&& ([A], MbN), and is really small in comparison. This shows how important the
factorization is for solving mechanical problems.

To test the algorithm, the result of the modi"ed Rump's algorithm has been computed. It
is illustrated in Figure 2. As one can see, it is overestimating the exact solution, but it gives
a good idea of the size of the solution. Above all, it is really smaller than the range computed
when considering all the terms in the matrices independent, as in the initial Rump's
algorithm.

As it has been noticed in reference [5], a large overestimation is obtained when including
the parameters in the elements of the matrices. For "nite element matrices, this
overestimation can become critical, and often leads to an insolvable problem. As it has been
shown above, even on 2]2 matrices, the overestimation can reach 10 times or more. Such
an adaptation of this algorithm enables its use for industrial problems involving huge size
matrices.

5. APPLICATIONS ON MECHANICAL SYSTEMS

Several speci"c examples are now presented to show the e$ciency of the new algorithm.
Each one is associated with a particular di$culty, for instance the number of parameters, or
the development of the matrices into a sum with interval parameters put into factor.

5.1. PROBLEM WITH SEVERAL PARAMETERS

This problem has two degrees of freedom, and is presented in Figure 3. The three
sti!nesses are uncertain and vary in bounded intervals. The focus here is on "nding the
transfer function envelope of the system.



Figure 3. Three Springs system. x
1

and x
2

are the displacements of the masses m
1

and m
2
, that are subject to the

forces f
1

and f
2

respectively.

TABLE 1

Numerical values of the parameters

k0
1
"100Nm~1 k0

2
"10 Nm~1 k0

3
"100Nm~1

k1
1
"0)04k0

1
k1
2
"0)04k0

2
k1
3
"0)04k0

3g
1
"0)02 g

2
"0)02 g

3
"0)02

m
1
"1 kg m

2
"1 kg
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Each spring of sti!ness k
i
is subject to hysteretic damping g

i
. Each value of the sti!ness is

uncertain (k
i
"k0

i
#[!1, 1]k1

i
, or k0

i
!k1

i
(k

i
(k0

i
#k1

i
).

The numerical values of the parameters are given in Table 1.
The dynamic problem is considered, and the set of equations for the transfer function is

AC
(1#ig

1
)k0

1
#(1#ig

2
)k0

2
!(1#ig

2
)k0

2
!(1#ig

2
)k0

2
(1#ig

2
)k0

2
#(1#ig

3
)k0

3
D#e

1C
(1#ig

1
)k1

1
0

0 0D
# e

2C
(1#ig

2
)k1

2
!(1#ig

2
)k1

2
!(1#ig

2
)k1

2
(1#ig

2
)k1

2
D#e

3C
0 0

0 (1#ig
3
)k1

3
D

!u2C
m

1
0

0 m
2
DB G

H
1

H
2
H"G

f
1
f
2
H. (36)

The solution of this problem will be done on a frequency band including all the modes,
represented by 61 points linearly spaced. The use of the new algorithm leads to envelope
bounds of both real and imaginary parts of the transfer function for each frequency
evaluated (see Figure 4). To have a very contracting iterative scheme, the spectral radius is
imposed to be less than 0)3, and the in#ation parameter is [0,2]. To compare the results with
one of the Monte Carlo simulation, 10 000 stochastic tests have been made on each of the 61
frequency points. The Monte Carlo simulation leads to an estimation of the envelope
interval which is not conservative. One can then compare the results of both methods for
a particular value of the frequency. For u"9)5 rad/s, the results are given in Table 2. The
Monte Carlo simulation gives results that are included in the true bounds, whereas the
proposed algorithm can "nd envelope bounds.

It must be noticed that the amount of computations for the proposed algorithm is small
compared to the amount needed by the Monte Carlo simulation. If the example is



Figure 4. Real and imaginary parts of the collocated transfer function (1, 1) of the system shown in Figure 3.
Solid lines represent the transfer function for several values of the sti!nesses. Crosses represent the envelope
calculated with the modi"ed Rump's algorithm, for $4% uncertainties.

TABLE 2

Real and imaginary parts of the collocated transfer function (1, 1) of the system shown in Figure 3, for
u"9)5 rad/s; the results of the proposed algorithm are compared with the results of the Monte Carlo

simulations

Monte Carlo Monte Carlo Proposed algorithm
5000 tests 20 000 tests

Flops 1380 000 5520 241 123 500
real (H(1, 1)) [0)05020, 0)09722] [0)05007, 0)09755] [0)04829, 0)09964]
imag (H(1, 1)) [!0)02754, !0)00649] [!0)02773, !0)00644] [!0)02916, !0)00557]
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computed with a smaller uncertainty ($2% for instance), the algorithm will be even faster
(10 500 #ops for u"9)5 rad/s). For the computation on all the 61 points, a $2%
uncertainty on each spring will use 16)6 M#ops, and a simulation with $4% uncertainty
126)5 M#ops. The result is also quite good, the envelope is wrapping the deterministic
transfer functions, without overestimating the true envelope too much (see Figures 4 and 5).

5.1.1. Non-linear dependence of the parameters

The decomposition of the "nite element problems into a factorized sum as in equation
(11) is not obvious. Consider a very simple "nite element problem, that of a meshed clamped



Figure 5. Real and imaginary parts of the collocated transfer function (1, 1) of the system shown in Figure 3.
Solid lines represent the transfer function for several values of the sti!nesses. Crosses represent the envelope
calculated with the modi"ed Rump's algorithm, for $2% uncertainties.

Figure 6. Clamped free plate meshed with 15 elements.
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free plate whose thickness varies in an interval (see Figure 6). If t is the thickness of the
plates, both t and t3 appear in the elementary matrices of the Love-Kirchho! theory (the
sti!ness matrix depends on t3, and the mass matrix on t). The dynamic problem is written as

(t3[K](1#ig)!u2t[M])MHN"MFN. (37)



Figure 7. Collocated transfer function (real and imaginary parts) for the plate at node (1, 1). Several determinis-
tic transfer functions have been drawn, corresponding to di!erent values of the thickness. The crosses correspond
to the robust interval algorithm.
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The intervals t and t3 cannot be considered as independent. Thus, one has to use an
approximate expression to take this dependence into account. t can be written as
m(t)#[!1, 1] rad (t), or t

0
#dt. Then t3 is

(t
0
#dt)3"t3

0
#3dt ) t2

0
#3t

0
) dt2#dt3. (38)

The matrix equation (37) becomes

((t3
0
[K] (1#ig)!u2t

0
[M])#dt(3 ) t2

0
[K] (1#ig)!u2[M])

#(3t
0
dt2#dt3) [K] (1#ig))MHN"MFN, (39)

where dt varies in [!rad (t), rad (t)]"[!dt, dt]. If dt and 3t
0
dt2#dt3 are said to be

independent (which is false, but for dt@t
0
, dtA3t

0
dt2#dt3), one will get a new equation of

the form.

(A
0
#e

1
A

1
#e

2
A

2
)X"b, (40)

where e
1
"[!dt, dt] and e

2
"[0,3t

0
dt2#dt3]. Equation (39) has been modi"ed so that

the dependence between the preponderant terms is conserved (i.e., the terms in dt). The
other terms are then considered to be independent of dt. Taking these terms into account is



Figure 8. Zoom of the collocated transfer function for the plate.
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anyway essential for the algorithm to lead to conservative results. By treating the new
equation with the modi"ed Rump's algorithm, one can get a conservative result of the
transfer function of the plate.

The numerical example treated is a clamped free plate (dimensions 4m]1m), whose
thickness is t"5]10~2m$6%. The value of the hysteretic damping in the plate is 2%.
The plate is meshed with 5*3 elements (see Figure 6).

The collocated transfer function calculated in point (1, 1) (see Figure 6) which is
represented in Figures 7 and 8. The algorithm leads to an envelope of the real and imaginary
parts of the transfer function, and the overestimation remains small.

5.1.2. System with multiple eigenvalues

A last example will be treated to show the e$ciency of the interval calculus, when taking
into account small uncertainties that are inherent in mechanical systems. The new
algorithm permits in this case to bring out important e!ects due to these small #uctuations.

Consider a three bladed-disk that is modelled with a seven-degrees-of-freedom (7-d.o.f.)
system (see Figure 9). The blades are modelled with the Euler}Bernouilli theory, and only
hysteretic damping is considered. The values of the parameters are: length ¸"1m, area
S"n10~4m2, Young's modulus E

0
"210GPa, and volumic mass o"7800kg/m3. The

damping coe$cient is g"2%. Young's modulus of one blade is uncertain (E"E
0
$10%).

As the three blades are identical in the crisp tuned model, the eigenfrequencies are found as



Figure 9. Three bladed-disk, and the 7 d.o.f.

Figure 10. Modulus of the transfer function H(1, 3). Young's modulus of the "rst blade is uncertain
(E"E

0
$10%). Dashed line represent the deterministic case for which all the blades are identical, solid lines are

the envelope calculated with the proposed algorithm.

ANALYSIS OF MECHANICAL SYSTEMS 963
multiple eigenvalues of a matrix system. If one of the blades is mistuned, then the
eigenvalues are no longer multiple ones, and new resonances can appear. This is a complete
modi"cation of the structure, and that kind of phenomenon is well known in aeronautics
(see references [24, 25]) and can lead to the appearance of a much stronger dynamics than
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the one expected for a tuned system. Consider the transfer function H(1,3). When all the
three blades are identical, the transfer function shows only two resonances. If one of the
blades is mistuned (for instance, if its Young's modulus is not exactly the same as for the
other blades) two new resonances appear on the transfer function.

In Figure 10 the modulus of the transfer function H(1, 3) is shown (its special calculation
is explained in Appendix C). The dashed line represents the deterministic case for which all
the three blades are identical, and solid lines the envelope of the transfer function for the
system in which one blade has an uncertain Young's modulus (E"E

0
$10%). The

envelope shows four resonance zones. This is due to the mistuning phenomenon. This deep
modi"cation of the spectrum due to a small perturbation brings out the e$ciency of the
method, that can predict an a priori non-expected phenomena.

For this kind of computation too, the modi"ed algorithm gives accurate results, once
again with the advantage of getting a robust envelope. This method can improve
considerably the accuracy of prediction of the dynamic behavior of mechanical systems
involving inaccurate parameters.

6. CONCLUSION

Vibrating systems are often modelled by using a "nite element method. When they are
dependent on uncertain and bounded parameters, they can be studied owing to the interval
calculus. For the solution of linear systems, in which some variables are intervals, one can
"nd well-suited algorithms, but they consider only full interval matrices, whereas this does
not correspond to real physical problems. A new formulation has been introduced here in
which the interval parameters are factorized when building "nite element matrices. For use
with this factorized formulation, a novel algorithm is presented. It corresponds to
a reformulation of the iterative algorithm of Rump [9] adapted to the "nite element
formulation. The convergence of this method has been studied, and a dichotomy scheme
ensures the convergence of the algorithm. It is easy to notice on a simple example that the
factorization and the proposed algorithm lead to better results than classical methods. On
standard-sized "nite element models, the classical methods would not work; hence the novel
method proposed is interesting. This method enables one to "nd bounds of the transfer
function of dynamic problems in which some of the parameters are uncertain and bounded.
The relevance of such an envelope is that one can be certain that all the solutions
corresponding to the bounded parameters are in this envelope. This is the robust aspect of
the method.

If used in a design stage, this algorithm allows one to take into account from the
beginning the uncertainties in the physical parameters of a product. Furthermore, if the
algorithm is used for analysis, it will be possible, as the bounds of the physical parameters
are known, to "nd guaranteed bounds for the static and dynamic responses. Then safety
zones can be de"ned, where a given level of the responses will never be reached.

The algorithm is based on "nite elements modelling, and the result is dependent on
the accuracy of the numerical model. Moreover, as for classical deterministic FEM,
the re"nement of the mesh has some kind of in#uence on the solution. It is also necessary
to take into account the model's errors in addition to the uncertainties in the parameters,
but this is beyond the scope of this paper. The proposed algorithm can handle only a
limited number of interval parameters. For working on industrial models, with tens or
hundreds of uncertain parameters, the algorithm will have to be improved. But for a design
stage, when few parameters are subjected to important uncertainties, it should really be
useful.



ANALYSIS OF MECHANICAL SYSTEMS 965
ACKNOWLEDGMENTS

The authors gratefully acknowledge the French Education Ministry for its support
through grant No. 97089 for the investigation presented here.

REFERENCES

1. R. G. GNANEM and P. D. SPANOS 1991 Stochastic Finite Elements: A Spectral Approach. New
York: Springer.

2. R. MOORE 1966 Interval Analysis. Englewood Cli!s, NJ: Prentice-Hall.
3. G. ALEFELD and J. HERZBERGER 1983 Introduction to Interval Computations. 111 Fifth Avenue,

New York 10003: Academic Press, Inc.
4. R. B. KEARFOTT 1996 Euromath Bulletin 2, 95}112. Interval computations: Introduction, uses,

and resources.
5. R. CHEN and A. C. WARD 1997 Journal of Mechanical Design 119, 65}72. Generalizing interval

matrix operations for design.
6. A. D. DIMAROGONAS 1995 Journal of Sound and <ibration 183, 739}749. Interval analysis of

vibrating systems.
7. H. U. KOYLUOGLU, A. S. CAKMAK and S. R. K. NIELSEN 1995 Journal of Engineering Mechanics

1149}1157. Interval algebra to deal with pattern loading and structural uncertainties.
8. E. R. HANSEN 1992 SIAM Journal on Numerical Analysis 29, 1493}1503. Bounding the solution of

interval linear equations.
9. U. KULISCH and W. MIRANKER 1983 A New Approach to Scienti,c Computation, Chapter Solving

Algebraic Problems with High Accuracy (S. M. Rump, editor), 51}120. New York: Academic Press.
10. S. NING and R. B. KEARFOTT 1997 SIAM Journal on Numerical Analysis 34, 1289}1305.

A comparison of some methods for solving linear interval equations.
11. Z. QIU, S. CHEN and I. ELISHAKOFF 1995 Journal of Optimization ¹heory and Applications 86,

669}683. Natural frequencies of structures with uncertain but non random parameters.
12. Z. QIU, S. CHEN and I. ELISHAKOFF 1996 Chaos, Solitons and Fractals 7, 425}434. Bounds of

eigenvalues for structures with an interval description of uncertain but non random parameters.
13. Z. QIU, I. ELISHAKOFF and J.S. JR 1996 Chaos, Solitons and Fractals 7, 1845}1857. The bound set

of possible eigenvalues of structures with uncertain but non random parameters.
14. Z. QIU and I. ELISHAKOFF 1998 Computer Methods in Applied Mechanics and Engineering 152,

361}372. Antioptimization of structures with large uncertain-but-non-random parameters via
interval.

15. I. ELISHAKOFF 1999 How to Find the Range of Eigenvalues Due to ;ncertain Elastic Modulus and
Mass Density (I. Elishako!, editor), Whys and hows in uncertainty modelling, 341}355. Springer:
Vienna

16. J. ROHN 1996 ¹echnical Report 686. Institute of Computer Science, Academy of Sciences of the
Czech Republic. Checking properties of interval matrices.

17. S.P. SHARY 1995 SIAM Journal on Numerical Analysis 32, 610}630. On optimal solution of
interval linear equations.

18. W. OETTLI and W. PRAGER 1964 Numerische Mathematik 6, 405}409. Compatibility of
approximate solution of linear equations with given error bounds for coe$cients and right-hand
sides.

19. J. ROHN 1995 ¹echnical Report 619. Institute of Computer Science, Academy of Sciences of the
Czech Republic. Np-hardness results for some linear and quadratic problems.

20. J. ROHN 1995 ¹echnical Report 620. Institute of Computer Science, Academy of Sciences of the
Czech Republic. Validated solutions of linear equations.

21. J. ROHN and G. REX 1996 ¹echnical Report 666. Institute of Computer Science, Academy of
Sciences of the Czech Republic. Enclosing solutions of linear equations.

22. R. S. VARGA 1962 Matrix Iterative Analysis. Series in Automatic Computation. Englewood Chi!s,
NJ: Prentice-Hall.

23. J.-F. IMBERT 1995 Analyse des structures par e& le&ments ,nis. CeH paduès ED ditions, Toulouse,
France.

24. S.-T. WEI and C. PIERRE 1988 Journal of<ibration, Acoustics, Stress, and Reliability in Design 110,
429}438. Localisation Phenomena in mistuned assemblies with cyclic symmetry, Part 1: free
vibrations.



966 O. DESSOMBZ E¹ A¸.
25. S.-T. WEI and C. PIERRE 1988 Journal of<ibration, Acoustics, Stress, and Reliability in Design 110,
439}449. Localisation phenomena in mistuned assemblies with cyclic symmetry, Part 2: forced
vibrations.

26. O. KNUG PPEL 1994 Computing 53, 277}287. Pro"l/bias*a fast interval library.
27. O. KNUG PPEL 1993 Bericht 93.3, ¹echnische ;niversitat Hamburg-Harburg. Bias*basic interval

arithmetic subroutines.

APPENDIX A: OPERATIONS ON INTERVALS

As the interval arithmetic is di!erent from the classical arithmetic, several arithmetic
operations on intervals are de"ned.

The four classical arithmetic operations are also de"ned:

x#y"[x
6
#y

6
, x6 #y6 ], (A1)

x!y"[x
6
!y6 , x6 !y

6
], (A2)

x*y"[min(x
6
y
6
, x

6
y6 , x6 y

6
, xy), max (x

6
y
6
, x

6
y6 , x6 y

6
, xy)], (A3)

1/x"[1/x6 , 1/x
6
] (0Nx), (A4)

x/y"x*(1/y) (0Ny). (A5)

An interval vector MxN is a vector whose components are intervals:

MxN"G
x
1
F

x
n
H. (A6)

An interval matrix [A] is a matrix whose components are intervals:

[A]"[A
ij
], i"1,2,m, j"1,2, n. (A7)

APPENDIX B: ALGORITHM OF RUMP

The problem to be solved is

[A]MxN"MbN. (B1)

[A] is a square matrix. For an arbitrary non-singular matrix [R], and a vector Mx
0
N,

[A]MxN"MbN (B2)

is equivalent to

Mx*N"[G]Mx*N#MgN, (B3)

with

[G]"[I]![R][A], (B4)

MgN"[R] (MbN![A]Mx
0
N), (B5)

MxN"Mx
0
N#Mx*N. (B6)

In practice, [R]+[A~1], and Mx
0
N"[R]MbN, so that [G] and MgN are of small norms, and

Mx*N is close to 0.
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Let the interval vector MXN satisfy

[G]MXN#MgNLMX0N, (B7)

where [G]MXN#MgN"M[G]MXN#MgN; MXN3MXNN, and MX0N is the interior of MXN. Then,

Mx*N"[G]Mx*N#MgN (B8)

has a unique solution Mx*N3[G]MXN#MgN [9].
The proof is true in the abstract, but the algorithm is used on computers that do not

always give true results (due to the mantissa truncation). The programs used to compute
interval arithmetic have to take the problem into account (for example the package BIAS
from KnuK ppel [26, 27]). If ( and = denote the computed interval multiplication and sum
(they overestimate the true intervals), and

[G](MXN=MgNLMX0N (B9)

is true in computed interval arithmetic, then one has also

[G]MXN#MgNLMX0N (B10)

since

[G]MXN#MgNL[G](MXN=MgN. (B11)

The algorithm can be summarized as follows.

First, an initialization stage:
e"[0)9, 1)1] is the so-called in#ation parameter;
[R]"inv(mid[A]) is an estimation of the inverse of mid[A];
Mx

0
N"[R]*MbN is an estimation of the solution;

MgN"[R]* (MbN![A]*Mx
0
N);

MxN"MgN initialization of the solution Mx*N;
[G]"I![R]*[A] is the iteration matrix in the equation

Mx*N"[G]Mx*N#MgN. (B12)

Second, iterative resolution:
MyN"e*MxN;
MxN"MgN#[G]*MyN
until MxNLMy0N or too many iterations;
if the condition MxNLMy0N is satis"ed, then MxN is a conservative solution of the equation

[A]MxN"MbN.

APPENDIX C: MODULUS OF THE TRANSFER FUNCTION

The modulus of the dynamic compliance vector is normally calculated as

DHD"JH2
r
#H2

i
. (C1)

To avoid the problem of overestimation due to the dependence of the real and imaginary
parts of the dynamic compliance, a method to compute the bounds of its modulus is
proposed.

For a system with one interval parameter, the compliance vector could be written in
the formalized way, after N iterations, according to the recurrent scheme proposed in
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Section 4 as

G
HN

i
HN

r
H"G

HN~1
i

HN~1
r
H#eNG

XN
i

XN
r
H, (C2)

where HN
i

is the imaginary part of the vector H, computed at the loop N of the algorithm.
The real and imaginary parts of H are both depending on the same interval parameter eN,
and applying directly equation (C1) would lead to large overestimations of DHD. Equation
(61) can be written as

G
HN

i
HN

r
H"

N
+
n/1

enG
Xn

i
Xn

r
H . (C3)

The modulus can then be calculated as

mod (MHN)"S
N
+
n/1

e2n
1

(Xn2
i
#Xn2

r
)#2

N~1
+
n/1

N
+

p/n`1

en`p
1

(Xn
i
Xp

i
#Xn

r
Xp

r
), (C4)

and the dependence between the real and imaginary parts is preserved in a better way than
applying equation (C1) directly.

APPENDIX D: NOMENCLATURE

x scalar
MxN vector
[A] matrix
x interval
x
6

interval lower bound
x6 interval upper bound
rad(x) interval radius

m(x)"x
#
"

x#x6
2

interval center

w(x)"x6 !x
6

interval width
MxN interval vector
[A] interval matrix
[M] mass matrix
[K] sti!ness matrix
g hysteretic damping coe$cient
E Young's modulus
d.o.f. degrees of freedom
#ops #oating point operations
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